Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Andrei S. Batsanov* and Joanna L. Hesselinkt

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England
\dagger née Megson

Correspondence e-mail:
a.s.batsanov@durham.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.106$
Data-to-parameter ratio $=13.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Norbornene-exo,endo-5,6-dicarboxylic acid

The crystal structure of the title compound, $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$, contains infinite hydrogen-bonded chains of molecules. The norbornene skeleton is slightly twisted.

Comment

The title compound, (I), alternatively called bicyclo[2.2.1]-hept-2-ene-trans-5,6-dicarboxylic acid, has been studied as part of a series of small-molecule models of organic polymers influencing the crystallization of inorganic salts, particularly CaCO_{3} (Megson, 1997; Feast et al., 2002).

(I)

Compound (I) was prepared by the Diels-Alder addition of cyclopentadiene to fumaric acid (Diels \& Alder, 1928; Alder \& Stein, 1933). The asymmetric unit of (I) comprises one molecule. Both carboxyl groups form the usual pairs of hydrogen bonds with their inversion equivalents (Fig. 1), linking the molecules into an infinite zigzag chain, the general direction of which is parallel to the crystallographic a axis. trans-Substitution results in a slight twisting of the norbornene skeleton, the $\mathrm{C} 2=\mathrm{C} 3$ and C5-C6 bonds forming an angle of 4.6 (2) ${ }^{\circ}$. On the other hand, the C5-C6 bond in (I) is slightly shorter than the corresponding bonds in cis-dicarboxylic acid derivatives, e.g. 1.566 (2)-1.574 (2) \AA (Bolte et al., 2000, Batsanov \& Hesselink, 2002a,b,c), due to lower steric repulsion between the carboxylic acid groups.

Experimental

Fumaric acid ($3.08 \mathrm{~g}, 27 \mathrm{mmol}$) and cyclopentadiene ($2.3 \mathrm{ml}, 2.3 \mathrm{~g}$, 35 mmol) in 50 ml of dry THF were stirred at room temperature for 48 h . The solvent was removed using a rotary evaporator and the residue recrystallized from doubly distilled water, yielding 4.41 g (93%) of (I) [m.p. 458-459 K, cf. 460-461 K (Alder \& Stein, 1933)].

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \\
& M_{r}=182.17 \\
& \text { Monoclinic, } P 2_{\mathrm{l}} / c \\
& a=12.698(1) \AA \\
& b=5.3906(3) \AA \\
& c=12.153(1) \AA \\
& \beta=92.56(1){ }^{\circ}{ }^{\circ} \\
& V=831.04(11) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 21 October 2002 Accepted 29 October 2002 Online 8 November 2002

Dicarboxylic Diels-Alder products, Part 4. For Part 3, see Batsanov \& Hesselink (2002C).

Data collection

SMART 1K CCD area-detector diffractometer
ω scans
Absorption correction: none
6167 measured reflections
2187 independent reflections
1773 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=29.0^{\circ}$
$h=-12 \rightarrow 17$
$k=-7 \rightarrow 6$
$l=-16 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.106$
$S=1.08$
2187 reflections
159 parameters
All H -atom parameters refined

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0291 P)^{2}\right. \\
\quad \quad+0.6115 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.32 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.22 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.024(3)
\end{array}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C8	$1.3111(19)$	C2-C3	$1.330(2)$
O2-C8	$1.2227(19)$	C3-C4	$1.517(2)$
O3-C9	$1.3173(18)$	C4-C7	$1.544(2)$
O4-C9	$1.2227(19)$	C4-C5	$1.580(2)$
C1-C2	$1.520(2)$	C5-C8	$1.503(2)$
C1-C7	$1.540(2)$	C5-C6	$1.553(2)$
C1-C6	$1.565(2)$	C6-C9	$1.503(2)$
C2-C1-C7	$100.88(12)$	C8-C5-C6	$112.08(12)$
C2-C1-C6	$106.29(12)$	C8-C5-C4	$114.16(12)$
C7-C1-C6	$98.70(12)$	C6-C5-C4	$102.02(11)$
C3-C2-C1	$107.72(14)$	C9-C6-C5	$113.20(12)$
C2-C3-C4	$107.76(14)$	C9-C6-C1	$115.68(12)$
C3-C4-C7	$100.57(13)$	C5-C6-C1	$103.58(11)$
C3-C4-C5	$103.27(12)$	C1-C7-C4	$93.96(12)$
C7-C4-C5	$101.33(12)$		
O2-C8-C5-C6	$-49.76(19)$	C5-C6-C9-O4	$20.6(2)$
C8-C5-C6-C9	$-105.37(14)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 01 \cdots \mathrm{O}^{2}{ }^{\mathrm{i}}$	$0.94(3)$	$1.70(3)$	$2.6350(17)$	$173(3)$
$\mathrm{O}^{\mathrm{H}-\mathrm{H} 03 \cdots \mathrm{O} 4^{4 i}}$	$0.93(2)$	$1.72(2)$	$2.6446(16)$	$176(2)$

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$.

Figure 1
The molecular structure of (I), showing the intermolecular hydrogen bonding [symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $1-x, 1-y, 1-z$]. Displacement ellipsoids are drawn at the 50% probability level.

All H atoms were refined sotropically; $\mathrm{C}-\mathrm{H}$ distances were in the range 0.97 (2)-0.99 (2) \AA.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

The authors thank Professor W. J. Feast for fruitful advice.

References

Alder, K. \& Stein, G. (1933). Ann. Chem. 504, 216-257.
Batsanov, A. S. \& Hesselink, J. L. (2002a). Acta Cryst. E58, o1272-o1274.
Batsanov, A. S. \& Hesselink, J. L. (2002b). Acta Cryst. E58, o1275-o1276.
Batsanov, A. S. \& Hesselink, J. L. (2002c). Acta Cryst. E58, o1325-o1327.
Bolte, M., Degen, A. \& Egert, E. (2000). Acta Cryst. C56, 1338-1342.
Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Diels, O. \& Alder, K. (1928). Ann. Chem. 460, 98-122.
Feast, W. J., Hesselink, J. L., Khosravi, E. \& Rannard, S. P. (2002). Polym. Bull. In the press.
Megson, J. L. (1997). PhD Thesis, Durham University, England.
Siemens (1995). SMART and SAINT. Versions 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

